saniona

Improving the lives of rare disease patients through scientific innovation

SANIONA CORPORATE OVERVIEW PRESENTATION, SEPTEMBER 2021

Forward-Looking Statements

This presentation contains forward-looking statements that provide Saniona's expectations or forecasts of future events such as new product developments, regulatory approvals and financial performance. Such forward-looking statements are subject to risks, uncertainties and may be impacted by inaccurate assumptions. This may cause actual results to differ materially from expectations and it may cause any or all of Saniona's forward-looking statements here or in other publications to be wrong. Factors that may affect future results include currency exchange rate fluctuations, delay or failure of development projects, loss or expiry of patents, production problems, breaches or terminations of contracts, government-mandated or market-driven price decreases, introduction of competing products, exposure to product liability claims and other lawsuits, changes in reimbursement rules, changes of laws and/or regulations or interpretation thereof, and unexpected cost increases. Saniona undertakes no obligation to update forward-looking statements.

Saniona Investment Highlights

Clinical-stage biopharmaceutical company focused on discovering, developing, and commercializing innovative therapies for rare disease patients

Shares listed on Nasdag Stockholm Small Cap (OMX: SANION). Research team in Copenhagen, Denmark. Corporate office in Boston area.

3

Tesomet: positive data from initial Phase 2 trials in two rare disorders

Hypothalamic obesity (HO)

Phase 2b trial expected to begin H2 2021; top-line data expected in H2 2023

Prader-Willi syndrome (PWS)

Phase 2b trial expected to begin H2 2021; top-line data expected in H1 2023

Proprietary ion-channel 2 drug discovery engine driving pipeline

SAN711

For rare neuropathic disorders, Phase 1 data expected in H1 2022

SAN903

For rare inflammatory, fibrotic, and hematological disorders, expected to enter Phase 1 in H2 2022

IONBASE Database

20,000 proprietary ion channel modulators

Validation from multiple strategic partnerships

NOVARTIS

Boehringer

Ingelheim

CAD-1883 for movement disorders

Novel target for schizophrenia

Tesofensine for obesity

Well-funded into H2 2022

Strong institutional support

RA Capital, Pontifax Venture Capital, New Leaf Venture Partners

Saniona Executive Team

Rami Levin, MBA President & **Chief Executive Officer**

Jason Amello Chief Financial Officer

Linea Aspesi **Chief Human Resources Officer**

sobi

V

BWH

SEPRACOR MERCK 1 1 1 2

N 0 T E K

Rudolf Baumgartner, MD Chief Medical Officer & Head of Clinical Development

Jørgen Drejer, PhD **Chief Scientific Officer**

Wendy Dwyer **Chief Business Officer**

Kyle Haraldsen Chief Technical Operations Officer

Trista Morrison Chief Communications Officer

uch Pharma M Actavis C Schering-Plough

Denelle Waynick Chief Legal Officer

Multiple Proprietary Product Candidates Advancing Through Pipeline

Product Candidate	Indication	Preclinical	Phase 1	Phase 2	Phase 2b	Phase 3	Upcoming Milestones	
PROPRIETARY PIPELINE:								
Tesomet (tesofensine + metoprolol)	Hypothalamic obesity						 Phase 2b trial expected to begin in H2 2021 	
	Prader-Willi syndrome						Phase 2b trial expected to begin in H2 2021	
SAN711 (GABA _A α3 PAM)	Rare neuropathic disorders						 Phase 1 top-line data expected in H1 2022 	
SAN903 (K _{ca} 3.1 channel inhibitor)	Rare inflammatory, fibrotic and hematological disorders						• Phase 1 trial expected to begin in H2 2022	

Database of 20,000+ *proprietary compounds* generated over 20+ years

Tesomet: A Potentially First-in-Class Triple Monoamine Re-Uptake Inhibitor/Beta-1 Blocker

Target indications:

Hypothalamic obesity (HO) and Prader-Willi syndrome (PWS), both rare diseases

saniona

Tesomet in Hypothalamic Obesity (HO)

Jesse, living with hypothalamic obesity

Hypothalamic Obesity, an Acquired Rare Disease

PATIENT	10,000-25,000 in the U.S			
POPULATION	16,000-40,000 in Europe ^{1,2,3}			
CAUSE	Most commonly caused by damage to the hypothalamus sustained during the removal of a craniopharyngioma			
DISEASE CHARACTERISTICS	Rapid, excessive and intractable weight gain post hypothalamic injury			
	Hyperphagia (uncontrollable hunger)			
	Memory impairment, attention deficit, lethargy and impulse control issues			
CURRENT TREATMENT	No FDA approved therapies			

Allie, living with HO, before and after surgery to remove her craniopharyngioma

¹ Bunin *et al*. The descriptive epidemiology of craniopharyngioma. *J Neurosurg*, **89** 547-551 (1998). doi:10.3171/jns.1998.89.4.0547

² Zacharia *et al.* Incidence, treatment and survival of patients with craniopharyngioma in the surveillance, epidemiology and end results program. *Neuro-Oncology*, **14** 1070-1078. (2012). doi:10.1093/neuonc/nos142

8

saniona

Initial Phase 2 Trial in HO Achieved Primary and Several Secondary Endpoints

Reduction in body weight vs. placebo

6.28%

Statistically significant (p=0.0169) in 24-week double-blind period. Reduction maintained (5.96%) in 24-week open-label extension.

9

Over 61% Patients with ≥5% body weight loss

Statistically significant (p=0.0461) in 24-week double-blind period. Data indicate Tesomet showed potential to meet FDA Guidance for weight management.

The two Type 2 diabetic patients with HO receiving Tesomet showed48.80% reduction in HbA1c at 24 weeks, versus no change in normoglycemic patients with HO. Tesomet was generally well tolerated

The majority of adverse events were mild or moderate in severity. There were no significant differences in heart rate or blood pressure between treatment groups.

Proposed Phase 2b Clinical Trial in Hypothalamic Obesity (HO)

PROPOSED TRIAL OVERVIEW

- Double-blind, randomized, placebo-controlled, multi-center trial
- Subjects (n≈110) will be randomized 1:1:1:1
- Sites planned in USA and outside the USA
- Primary endpoint will be change in body weight

saniona

Tesomet in Prader-Willi Syndrome (PWS)

John, living with Prader-Willi syndrome

Prader-Willi Syndrome, a Debilitating, Rare Genetic Disorder

PATIENT POPULATION	11,000-34,000 in the U.S 17,000-50,000 in Europe ^{1,2}			
CAUSE	Absent or defective paternally expressed genes at Chromosome 15 (q11.2-q13)			
DISEASE CHARACTERISTICS	Hyperphagia (uncontrollable hunger) Abnormal growth + body composition, low muscle tone Social, emotional and cognitive deficits Obesity-related comorbidities Significant burden on families and caregive			
CURRENT TREATMENTS	No FDA approved therapies for the treatment of hyperphagia			

John, Erik and Erin, who live in a home for adults with PWS

¹ Manzardo et al. Survival trends from the Prader–Willi Syndrome Association (USA) 40-year mortality survey, Genet Med 20, 24–30 (2018) doi:10.1038/gim.2017.92

¹² ² National organization of Rare Diseases: https://rarediseases.org/rare-diseases/prader-willi-syndrome/

PWS

Initial Phase 2 Trial in PWS Showed Reductions in Body Weight, Hyperphagia

Reduction in body weigh (adults)

5.4%

Clinically meaningful per FDA benchmarks for weight loss trials (data from adult patients in 12week double-blind study). - 8.1 Points Reduction in hyperphagia (adults)

Statistically significant (p=0.0058) reduction (in adults in 12-week double-blind study). Reduction in hyperphagia and body weight (adolescents)

Dose-dependent improvements in hyperphagia and body weight (in adolescents in 2nd open-label extension) Tesomet was generally well tolerated

The majority of adverse events were mild or moderate in severity. There were no significant findings in heart rate, blood pressure, ECG or safety laboratory parameters.

Proposed Phase 2b Clinical Trial in Prader-Willi Syndrome (PWS)

PROPOSED CLINICAL TRIAL OVERVIEW

- Double-blind, randomized, placebo-controlled, multi-center clinical trial
- Subjects will be randomized 1:1:1:1 (n≈120 subjects)
- Sites planned in USA, Canada, EU, UK, Australia, New Zealand, Brazil
- Primary endpoint will be change in hyperphagia scores, as measured by the HQ-CT questionnaire

saniona

Saniona's Ion Channel Drug Discovery Engine

Saniona Ion Channel Drug Discovery Engine

Ion Channels = scientifically validated yet significantly untapped

Ion channel modulating drugs = \$11.1B industry, yet only 20% of ion channels commercially available as therapeutics.

Saniona's foundation for success:

- Library of 20,000+ *proprietary* compounds generated over 20+ years
- Integrated *proprietary* IONBASE[™] database with accumulated chemical-biological data for 130,000+ chemical entities
- Program has *generated SAN711 and SAN903*; multiple additional programs in discovery stage
- Positioned to advance multiple *new drug candidates*

Saniona Drug Discovery Engine Generates Continual Pipeline

Saniona expects the ion channel drug discovery engine to deliver a continual stream of new drug candidates

saniona

SAN711 for neuropathic disorders

SAN711: Potentially First-in-Class Positive Allosteric Modulator of GABA_A α 3 Receptors

- Target indication: rare neuropathic disorders
- Status: Phase 1 trial in healthy volunteers initiated in June 2021; top-line data expected in first half of 2022

SAN711 is a highly selective modulator of $GABA_A$ α 3 in the spinal cord:

- Designed to restore dysfunctional spinal inhibition and prevent abnormal pain signaling to the brain
- Does not impact GABA_A α1 and α5, the receptors shown to drive negative side effects off benzodiazepines (e.g., sedation, motoric instability, abuse liability, and memory impairing effects)
- No tolerance development following chronic treatment in preclinical models

SAN711 reduces Pain (trigeminal neuralgia model): Acute Treatment

SAN711 Prevents Pain (trigeminal neuralgia model): Chronic Treatment

*saniona

SAN711 Maintains Efficacy after Repeated Dosing – in Contra

SAN711 Phase 1 clinical trial initiated in June 2021

- SAN711 represents a novel, first-in-class approach
- Selectively enhances the effects of GABA on $\alpha 3$ containing receptors
- Ideal for rare diseases associated with neuropathic pain or itch
- Devoid of typical adverse effects (sedation, motoric instability, cognitive impairment, abuse liability and physical dependence)
- Strong preclinical proof of concept in in vivo models for neuropathic pain.

Acute and chronic efficacy is maintained; without tolerance development Phase 1 clinical trial initiated in June 2021 Data expected early 2022

SAN711 Phase 1 Clinical Trial Design

Objectives:

- 1. Determine the tolerability (of SAN711) and the maximum tolerated dose (MTD)
- 2. Measure binding to target receptors

Subject Population: ~80 healthy volunteers Intervention: SAN711 vs Placebo

SAN903 for rare inflammatory and fibrotic disorders

SAN903: Potentially First-in-Class Inhibitor of Calcium-Activated Potassium Ion Channel

- Target indications: rare inflammatory, fibrotic, and hematological disorders
- Status: Phase 1 clinical trial in participants expected to begin in the second half of 2022

- K_{Ca}3.1 is important for activation of immune cells, fibroblasts, and red blood cells
- **SAN903** specifically inhibited K_{Ca}3.1 potassium channels, leading to reduced calcium influx
- **SAN903** inhibited inflammation and fibrosis
 - Effectively dampened cell division and migration
 - Reduced cytokine and collagen production

K_{Ca}3.1 is Involved in Many Fibrotic, Inflammatory and Blood Diseases

Immune Cells

the cell type that protects us from infections, including T cells

K_{Ca}3.1 plays a pathological role in **overactive immune responses** in chronic inflammatory diseases

Fibroblasts

the cell type that maintains the connective tissue in our body

 $K_{Ca}3.1$

K_{Ca}3.1 plays a pathological role in **excessive connective tissue production** in chronic fibrotic diseases

Erythrocytes

the cell type that carries oxygen in our blood

K_{Ca}3.1 plays a pathological role in **erythrocyte destruction** in certain inherited blood diseases

SAN903 Reduces Lung Inflammation, Fibrosis (Idiopathic Pulmonary Fibrosis model)

- SAN903 attenuated lung fibrosis and inflammation
- SAN903 outperformed nintedanib and pirfenidone on reducing inflammation and fibrosis
- In contrast to nintedanib, the effect of SAN903 appeared independent of TGF-β1 inhibition
- Overall, the therapeutic effect of SAN903 seemed superior to IPF standard-of-care medicines

SAN903 Expected to Advance into Clinic H2 2022

- SAN903 specifically inhibits K_{Ca}3.1 potassium channels
- Demonstrated efficacy in multiple in vitro and in vivo models of inflammation, fibrosis and blood disorders
- Outperformed two marketed products in an in vivo model of idiopathic pulmonary fibrosis; potential first-in-class AND best-in-class profile

First-in-human program (Phase 1, healthy adults) expected to start H2 2022

Key 2021 – 2023 Milestones

Ø	Orphan Drug Designation (ODD) for Tesomet in Prader-Willi Syndrome (PWS)	Q1 2021
Ø	Resolution with FDA on regulatory path for Tesomet in hypothalamic obesity (HO)	Q1 2021
Ø	Initiated Phase 1 clinical trial of SAN711 in healthy volunteers	H1 2021
Ø	Orphan Drug Designation (ODD) for Tesomet in hypothalamic obesity (HO)	Q3 2021
	Initiate Phase 2b clinical trial of Tesomet in hypothalamic obesity (HO)	H2 2021
	Initiate Phase 2b clinical trial of Tesomet in Prader-Willi Syndrome (PWS)	H2 2021
	Top line data from Phase 1 clinical trial of SAN711 in healthy volunteers	H1 2022
	Initiate Phase 1 clinical trial of SAN903	H2 2022
	Top line data from Phase 2b clinical trial of Tesomet in Prader-Willi Syndrome (PWS)	H1 2023
	Top line data from Phase 2b clinical trial of Tesomet in hypothalamic obesity (HO)	H2 2023

Building Tomorrow's Rare Disease Company

Tesomet is only the beginning...

saniona

Thank You